Cauchy model Refractive index wavelength dependence is specified: $$n(\lambda)=A_0+\displaystyle\frac{A_1}{\lambda^2}+\frac{A_2}{\lambda^4}$$ Sellmeier model In OptiLayer, Sellemeier model is represented in different forms. Refractive index wavelength dependence is specified: $$n^2(\lambda)=A_0+\displaystyle\frac{A_1\lambda^2}{\lambda^2-A_2}$$ $$n^2(\lambda)=A_0+\displaystyle\frac{A_1\lambda^2}{\lambda^2-A_2}+\frac{A_3\lambda^2}{\lambda^2-A_4}$$ $$n^2(\lambda)=A_0+\displaystyle\frac{A_1\lambda^2}{\lambda^2-A_2}+A_3\lambda^2$$ $$n^2(\lambda)=A_0+\displaystyle\frac{A_1\lambda^2}{\lambda^2-A_2}+\frac{A_3\lambda^2}{\lambda^2-A_4}++\frac{A_5\lambda^2}{\lambda^2-A_6}$$ Arbitrary dispersion Arbitrary dispersion model assumes Cauchy model for the refractive index. The coefficients of the Cauchy model vary in arbitrary way in the course of the characterization process. Exponential model for extinction coefficient Dispersion behavior of extinction coefficient is described by exponential formula: $$k(\lambda)=B_1\exp\{B_2\lambda^{-1}+B_3\lambda\}$$. Drude model Refractive index and extinction coefficient are connected: $$2n(\lambda)k(\lambda)=\displaystyle\frac{A_1A_2\lambda^3}{\lambda^2+A_2^2}$$ $$n^2(\lambda)-k^2(\lambda)=A_0-\displaystyle\frac{A_1 A_2^2\lambda^2}{\lambda^2+A_2^2}$$ Hartmann model $$n(\lambda)=A_0+\displaystyle\frac{A_1}{\lambda-A_2}$$

### Easy to start

OptiLayer provides user-friendly interface and a variety of examples allowing even a beginner to effectively start to design and characterize optical coatings.        Read more...

### Docs / Support

Comprehensive manual in PDF format and e-mail support help you at each step of your work with OptiLayer.