Spiegel6 Spiegel2 Spiegel14
OptiLayer:  Your Partner in Design and Post-Production Characterization of Optical Coatings


Cauchy model

Refractive index wavelength dependence is specified:

\(n(\lambda)=A_0+\displaystyle\frac{A_1}{\lambda^2}+\frac{A_2}{\lambda^4} \)

Sellmeier model

In OptiLayer, Sellemeier model is represented in different forms. Refractive index wavelength dependence is specified:

  • \(n^2(\lambda)=A_0+\displaystyle\frac{A_1\lambda^2}{\lambda^2-A_2}\)
  • \(n^2(\lambda)=A_0+\displaystyle\frac{A_1\lambda^2}{\lambda^2-A_2}+\frac{A_3\lambda^2}{\lambda^2-A_4}\)
  • \(n^2(\lambda)=A_0+\displaystyle\frac{A_1\lambda^2}{\lambda^2-A_2}+A_3\lambda^2\)
  • \(n^2(\lambda)=A_0+\displaystyle\frac{A_1\lambda^2}{\lambda^2-A_2}+\frac{A_3\lambda^2}{\lambda^2-A_4}++\frac{A_5\lambda^2}{\lambda^2-A_6}\)
Arbitrary dispersion Arbitrary dispersion model assumes Cauchy model for the refractive index. The coefficients of the Cauchy model vary in arbitrary way in the course of the characterization process.
Exponential model for extinction coefficient

Dispersion behavior of extinction coefficient is described by exponential formula:


Drude model

Refractive index and extinction coefficient are connected:


\(n^2(\lambda)-k^2(\lambda)=A_0-\displaystyle\frac{A_1 A_2^2\lambda^2}{\lambda^2+A_2^2}\)

Hartmann model \( n(\lambda)=A_0+\displaystyle\frac{A_1}{\lambda-A_2} \)


Easy to start

Icons 100x100 1OptiLayer provides user-friendly interface and a variety of examples allowing even a beginner to effectively start to design and characterize optical coatings.        Read more...

Docs / Support

Icons 100x100 2Comprehensive manual in PDF format and e-mail support help you at each step of your work with OptiLayer.



Icons 100x100 3If you are already an experienced user, OptiLayer gives your almost unlimited opportunities in solving all problems arising in design-production chain. Visit our publications page and challenge page.


Go to top